

Abstract—The increased availability of Powershell on targeted

systems has spurred the development of sophisticated toolkits and
methodologies to facilitate attacks on Windows devices. Powershell
provides a suitable environment for deploying malicious payloads
and evading detection through a series of in-memory attacks without
ever writing to disk. An entry point within the domain gives
adversaries potential access to other hosts in the network to spread
malware, especially throughout an enterprise environment. Our
approach focuses on the proactive monitoring of Windows event logs
forwarded to a centralized server to detect malicious Powershell
usage and obfuscated commands in real time. By flagging certain
signatures in the process command line, we demonstrate a detailed
detection of malicious Powershell activity.

I. INTRODUCTION
Powershell is a versatile configuration management

framework designed to automate system tasks as well as
managing system processes in the Windows operating system.
Powershell is built on the .NET framework and provides access
to the Win32 API including core and system DLLs [1]. This
presents an entry point for attackers to utilize Powershell as a
standalone environment for deploying malicious payloads. The
deployment of such a powerful tool also makes it ideal for
cybercriminals to leverage Powershell as a template for an
attack.

The usage of Powershell simplifies application and process
management using lightweight scripts known as cmdlets [2]. By
default, Powershell is installed in all versions of Windows 7,
Windows Server 2008 and higher. This is one of the main
reasons cybercriminals leverage Powershell as an attack
framework. The minimal logs generated by default makes it
difficult to detect under forensic analysis. System
administrators generally trust the framework, often allowing
malicious Powershell activity to pass through as regular traffic.
This gives attackers the potential for misuse by utilizing
Powershell in an attack.

II. ATTACK VECTORS
 Traditional security tools including network firewalls and
antivirus software can be setup to prevent the execution of
malicious scripts, but there are ways to evade traditional
methods of detection. The Powershell library includes a
function to encode commands before execution. This can be

done by utilizing the post exploitation framework Empire to
deploy payloads to target systems after initial network
intrusion. Empire allows an attacker run executables or scripts
completely in memory leaving few traces of activity on the
target system [3]. Overall, Empire consists of a variety of
modules that can be deployed on a target machine depending
on the intentions.
 Empire deploys an attack using a listener, agent, and stager.
The listener is a session handler to control a compromised agent
that reports back to the command and control server listening at
a specified IP and port. The stager is the payload to deploy on a
target machine giving the attacker full control of the target
device.

In order for an attacker to execute Powershell commands on
a target machine, the system must have the initial layer of
security compromised. The attacker can utilize Powershell to
execute an obfuscated launcher on the machine using the
encoded command parameter to gain full control of the device
using a reverse shell. Figure 1 depicts the launcher to be
executed on a machine that will report to a remote server.

Fig 1. Command encoded in Base64

The encoded payload in its raw context is difficult for a user
to interpret due to the nature of its obscurity. Specifically, the
encoded command makes a request to a session handler on a
specified port and executes commands that are sent back to the
machine. This is performed using a listener, agent, and stager
allowing an attacker to interact with the target machine.

A Heuristic Approach to Signature Based
Detection of PowerShell Obfuscation

Johnny Lu, Ryan Smith
Jet Propulsion Laboratory, Pasadena, CA, USA

California Institute of Technology
Corresponding Authors: johnny.lu@jpl.nasa.gov, ryan.smith@jpl.nasa.gov

Powershell version 5.0 includes enhanced logging visibility
with the addition of module logging, script block logging, and
transcription. This allows for the recording of portions of
scripts, some de-obfuscated code, blocks of code as they are
being executed, and keeps a record of user, session,
timestamp, and metadata for each command [4]. Figure 2 is
shown to represents Figure 1 in its de-encoded form. The
underlying components of the command can be understood
from specific keywords in the string. Specifically, the
underlying functions executed has the target machine open a

web client to make request to the listed IP address 10.0.2.15 at
port 443 and downloads the data it receives to be executed on
the machine. Ultimately, this presents a difficult process to
detect malicious commands running without first reversing the
encoded command.

Variations of functions can be used to facilitate common
attacks using Powershell as a template. For instance, there are
more than 100,000 possible variations of the
EncodedCommand parameter alone [5]. Many of these tools
used for obfuscation are freely available on the web as public
tools.
 Another obfuscation technique involves a combination of
splitting a string, reversing or encrypting the pieces, adding
escape characters, and merging the parts together by
concatenation or using the format operator. The command in

Figure 4 has the system open a webclient, download a string
and execute the string as a command. One of them being
Invoke-Obfuscation, a Powershell command and script
obfuscator developed by security researcher Daniel Bohannon
at Mandiant. The tool performs string-level obfuscations using
various encoding and encrypting methods including ASCII,
hexadecimal, octal, binary, and SecureString [6]. Moreover,
the purposes of the tool aids other researchers by simulating
obfuscated commands in order to test detection capabilities
within the network.
 Invoke-Obfuscation presents a magnitude of possible
randomly generated obfuscations. These string-generated
commands can also be encapsulated under layers of
obfuscation, making it difficult to reverse. One method is by
using escape characters which are ignored by the command
line if not recognized when parsed by Windows Powershell.
Figure 3 shows a list of the recognized special escaped
characters. This type of obfuscation has been seen in the wild
for instance, by re-writing the argument /i:http to /i:^h^t^t^p to
break signature-based detection [7].

Fig. 4 Obfuscated command invocation

The instance in Figure 4 shows a basic use case of executing
obfuscated commands on a remote system. Moreover,
commands can be obfuscated into layers, making it much
more difficult to reverse engineer or understand the code and
its objectives in an attack. Figure 5 shows the command in

Fig 3. Recognized Powershell escape characters [8]

Fig. 5 Command under 3 layers of obfuscation

Fig 2. Decoded Base64 command

Figure 4 under three layers of obfuscation that achieves the
same end result. Based on the details of the command
pipeline, it is difficult to determine the goal of what the
command is trying to accomplish. Obfuscation is almost never

used legitimately by typical users. Nonetheless, there is
definitely potential for an attacker to obfuscate in order to hide
their intentions.

III. METHODS OF DETECTION
In this section, we focus on detecting malicious Powershell

activity at the source when executed in the command line.
This is mainly because once Powershell is invoked, an
attacker leaves few traces of activity during an intrusion by
running scripts entirely in memory [9]. To detect malicious
Powershell at its source, we query specific arguments in the
command and flag certain keywords that seem suspicious such
as encoded commands. Improving the detection of such
arguments can be done by actively monitoring log data and
flagging indicators of obfuscation. Some keywords we were
monitoring for included: -Enc, -sta, -NoP, -NoL, -Win Hidden,
-NonI, -EP Bypass, reverse, split, replace, concat, and the -f
format operator. Even so, in the previous section we found
multiple ways of re-writing a command to achieve the same
result.

In order to scale with the processing of log data and events,
we used Splunk ES, a SIEM (Security Information and Event
Management) to manage data aggregation in a centralized
server. The server processes the raw machine generated data
into human readable results and analyzes the data to deliver
real time indexing, graphs, reports, alerts, and dashboards
[10]. This provides us with the capabilities to detect common
patterns or anomalies in the data.

The Splunk application Search and Reporting allows us to
filter specifically Windows logs using the index wineventlog
and the event code 4688 signifying the creation of a new
process. We narrowed down the events to commands invoking
powershell.exe and the argument “–enc” including variants
such as “-EncodedCommand,” “-EC,” and “-en.” With alerts
in place, we executed the base64 encoded payload and we
were able to detect its usage on the network. Referring back to

Fig. 7 Dashboard of PSExec and Powershell encoded activity

Fig. 6 Detected Powershell Event Log

the entire log displayed the user who executed the command
including the name of the device shown in Figure 6.

Our team created a dashboard to keep track of suspicious
Powershell activity including the usage of Powershell for
lateral movement within the domain illustrated in Figure 7.
With our active indexers in place, we search for known
vulnerabilities from the PSExec and WMIC processes that
allows executing programs on remote systems. PsExec
simplifies the setup and installation of client software on
remote systems and gives users full interactivity of console
applications, while WMIC is a built in Windows application
that allows users to run batch scripts on remote systems from
the console [11], [12]. These processes have legitimate uses
for system administrators to manage systems on the network,
but they also provide a potential tool for attackers to spread
malware. If given access to a domain administrator account,
an attacker can utilize lateral movement modules in Empire to
infect other systems the admin has access to. This makes it
paramount to track malicious Powershell at its source before
self-replicating throughout a domain of hosts.

In our results, we were able to narrow down Powershell
activity corresponding to the system and user when we
deployed our implementation to production. Figure 8 depicts
the detected frequency of Powershell encoding and PSExec
activity over the course of a 30 day period. Furthermore,
anytime our automated search heads detect suspicious activity,
it will fire off alerts and we will be able to undergo
appropriate measures to isolate and further investigate the
device.

Figure 8 Frequency of detected user and system PS activity

(a)

(b)

IV. CONCLUDING REMARKS
Powershell can be used as a standalone tool to perform a

variety of tasks on a Windows system but also presents a
security flaw with potential for misuse. An attacker can
encode or obfuscate payloads to execute malicious commands
and evade traditional methods of detection. By actively
monitoring for certain keywords, we can flag potential
indicators of obfuscation. This is done by scaling our log
collection to a central server for processing. At this time, we
are capable of detecting some of the basic forms of Powershell
attacks and obfuscations. Our next approach will be moving
on to detect relatively higher levels of obfuscation.

References
[1] “API Sets for Universal Windows Platform (UWP) apps.” API Sets for

Universal Windows Platform (UWP) apps (Windows), Microsoft.
[2] “Writing a Windows Powershell Cmdlet.” Cmdlet Overview, Microsoft

Developer Network. Microsoft.
[3] “The Increased Use of Powershell Attacks.” The Increased Use of

Powershell Attacks, Symantec.
[4] Dunwoody, Matthew. “Greater Visibility Through PowerShell Logging «

Threat Research Blog.” FireEye, FireEye, 11 Feb. 2016.
[5] White, Jeff. “Pulling Back the Curtains on EncodedCommand PowerShell

Attacks.” Palo Alto Networks, Unit 42, 10 Mar. 2017.
[6] Bohannon, Daniel. Invoke-Obfuscation: PowerShell obFUsk8tion

Techniques & How To (Try To) D""e`Tec`T 'Th' 'Em'. Mandiant.
[7] Bohannon, Daniel. Obfuscation in the Wild: Targeted Attackers Lead the

Way in Evasion Techniques « Threat Research Blog. FireEye, 30 June
2017.

[8] Jofre, Juanpablo. “About Escape Characters.” about_Escape_Characters |
Microsoft Docs, Microsoft, 9 June 2017. Accessed 14 Aug. 2017.

[9] Kazanciyan, Ryan. Hastings, Matt. “Investigating Powershell Attacks.”
FireEye. Black Hat USA, 2014.

[10] “Splunk Software as a SIEM.” Improve your security posture by using
Splunk as your SIEM, Splunk. 2016.

[11] Russinovich, Mark. “PsExec v2.2.” PsExec - Windows Sysinternals |
Microsoft Docs, Microsoft, 29 June 2016.

[12] Wilansky, Ethan. “WMIC - Take Command-Line Control over WMI.”
Microsoft Developer Network, Microsoft, Mar. 2002.

